Beta–3 Version 0.13.0 release date 2018-11-05

Download Links

The main OpenSpace application download includes all necessary data for the scene that is loaded on default. If another scene is loaded, it will download the necessary datasets using the HTTP protocol on startup. For an application that does not contain any datasets, see below.



Optional Planetary Datasets

For all downloads, see below for installation instructions.
Mars Download: Extra downloads of high resolution HiRISE patches (images and terrain model) on Mars.
Mercury Download Extra downloads of terrain patches created by the MESSENGER mission.
Moon Download Extra downloads of terrain patches for the Apollo missions to the Moon.

Optional Light-weight Download

Light-weight Download Use this download link if you are upgrading an existing installation of OpenSpace and already have a working sync folder that you do not want to replace. The application behind this link is identical to the download above with the exception of the sync folder.
Light-weight Windows Download


This page contains information about the second beta of version 0.13.0 of OpenSpace as released on November 5th, 2018. Please note that the software is as-of-yet incomplete and may be unstable. Binaries for Windows and MacOS are available, but the source code is freely available on GitHub to peruse and compile for missing platforms or to get the newest version directly from the source. The commit of this version is 3ff7b974f5be9a45b6f2663e27021255b6264fec. In case of any questions or issues, send us an email or join our Slack support.


After downloading and unzipping the main package, the OpenSpace application (OpenSpace.exe) is located in the bin folder. OpenSpace requires the installation of the Microsoft Visual C++ Redistributable for Visual Studio 2017and Microsoft Visual C++ Redistributable for Visual Studio 2013.

Additionally, there are optional Mars datasets (and others) available which can be downloaded separately. These show high resolution image and digital terrain patches on the surface of Mars. The zip file can be extracted at any location, though an SSD is recommended for a smoother experience. While it is possible to change the location in which these are stored (by editing the OpenSpace/data/assets/customization/globebrowsing.asset file), a good default location that is automatically searched is a sister directory to the OpenSpace folder named OpenSpaceData (for example, if you installed OpenSpace in C:\OpenSpace\0.13.0, the folder for the optional planetary datasets would be C:\OpenSpaceData\Mars, C:\OpenSpaceData\Mercury, etc. If you are editing the globebrowsing.asset manually, please note not to use \ in the paths and only use / as otherwise error messages will be generated at startup.


This package contains five scenes that are of interest, the DefaultNew HorizonsRosettaOsirisRex, and Voyager scenes, described below, with an additional variant of the default called Default_full with more optional content. The scene can be selected by editing the openspace.cfg file, which is found in the base directory. In this file, the Asset parameter points to a *.scene file in the data/asset folder that is executed and defaults to default, which means that data/asset/default.scene is loaded. This can be changed to, for example newhorizons or rosetta before starting OpenSpace. The scene files describe all the assets that are loaded for that particular scene, in the case of the default scene, it loads all planets, the moons of Mars, and the entire Digital Universe catalog.

After the application has been started, the user interface is visible from the start, through which features of the software are accessed. In each scene, the keys 1–0, Shift 1–Shift 0, Ctrl 1–Ctrl 0 determine the Delta Time, that is the time at which the in-game simulation runs compared to the real world speed. Space pauses and unpauses the time. The ` key opens an interactive Lua console through which detailed settings can be set, see the documentation/LuaScripting.html for a list of commands. Also in all scenes, the left mouse button rotates the camera around the selected Origin, the right mouse button zooms in and out, and the middle mouse button rolls the camera. By pressing CTRL and using the left mouse button the object can be moved off the screen center. Pressing the F key, disable rotational friction, which will cause the camera to rotate around the object forever, whereas Shift+F performs the same operation for the zooming of the camera, and CTRL+F the same for a rolling motion.

After starting OpenSpace with a specific scene, the documentation/KeyboardMapping.html file contains a list of all the available keyboard commands, including a short description.

Our YouTube channel contains a set of tutorial videos that explain the usage of OpenSpace in greater detail.




This scene is enabled on default and provides the ability to look at detailed terrain models of Earth, the Moon, Mars, other planets, and the American Museum of Natural History’s Digital Universe. The view defaults on Earth at the current date. The currently displayed terrain can be changed by selecting Scene in the GUI and navigating to Earth -> RenderableGlobe -> Layers -> ColorLayers. On default, the ESRI VIIRS Combo is enabled, which uses the Suomi VIIRS daily images when viewing the whole Earth, but switches to a high-detail image from ESRI when zooming in. A layer can be enabled by opening the tree view of the object and selecting the Enabled checkbox. Additional Overlays are also available. These layers are also available on the Moon and Mars to which you can navigate using the GUI element in the bottom mentioning Earth (the default focus).

On Mars, of special interest are the CTX Mosaic ColorLayers which are composite images of the Mars Reconnaissance Orbiter’s CTX instruments. These show a large area of Mars with 6 m per pixel resolution and are available for about 70% of the surface. If the additional Mars package was downloaded, it is recommended place them in a OpenSpaceData sister directory (see above) before starting. This will automatically make a subset of CTX and HiRISE terrain models available in the Layers list.

New Horizons

This scene shows the acquisition of New Horizons’ images of the Plutonian system in July 2015. The scene starts at around 10:00 on July 14th, around 10 minutes before a new image campaign starts. By selecting Pluto asthe Origin and moving time faster using the number keys, you can see the imprint of the instrument’s field-of-view on the planetary surface and see the images being projected. The images that you see are not aligned, since old positional information of the spacecraft is used to calculate these pictures. Newest information should be available to the general public soon and we will update OpenSpace accordingly.

In the top left part of the screen, a timer shows when the next image is being taken.

Additional keybindings:
A: Focus the camera on the New Horizons space craft
S: Focus the camera on Pluto
D: Focus the camera on Charon
L: Toggle the visibility of the labels of New Horizons’ instruments
T: Toggle the visibility of Pluto’s and Charon’s shadows
F8: Remove the already projected images from the surface
Keypad 8Keypad 2: Increase and decrease the height exaggeration on Pluto to show the terrain structure
Keypad 9Keypad 3: Increase and decrease the height exaggeration on Charon to show the terrain structure


The Rosetta scene shows the entire mission of ESA’s Rosetta spacecraft around the comet 67P. Also here, the spacecraft’s images are being projected onto the comet. In addition, the separation of the Philae lander is visible as well.

Additional keybindings:
A: Focus the camera on the 67P comet
S: Focus the camera on the Rosetta space craft
I: Toggle the visibility of the free-floating image plane
P: Toggles the image projection of Rosetta; useful if making long time jumps and not wanting to wait for the image projections to occur


This scene demonstrates the entire lifetime of the OsirisRex space craft on its way to the asteroid Bennu and it’s subsequent journey back to Earth. The scene starts out at Earth around the time of the spacecraft’s launch and has information throughout the entire mission until it’s landing back on Earth in Utah. The models of OsirisRex and Bennu are available, as well as a preliminary instrument timing, which uses the same image projection technique as employed in the New Horizons and Rosetta cases to show where images of the asteroid will have been taken.


This scene contains the Voyager 1 and Voyager 2 missions as they were launched from Earth in the 70s and visited all the gas giants in the solar system. The spacecraft models are included and are pointed accurately throughout the mission. Position and orientation information are available until the second half of the 21st century.